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THE SOLUTION BY I.-.'ERATION OF NONLINEAR INTEGRAL EQUATIONS 

flRQTCtf.'n 

I 
In the mathematical formulation of many physical problems there are fre- ! 

quentiy encountered Integral equations of the linear as well as non-linear | 
type.    The adequate solution of such equations then becomes a practical j 
necessity. I 

It turns out that for large classes of non-linear integral equations !|        j 
describing certain wave phenomena the well known method of successive approxi- ; 
mations provides a feasible means of constructing a  solution,  securing its 
uniqueness, and, in the processa,  furnishing practical estimates of relevant ' 
magnitudes and errors.    Furthermore, the method also lends itself quite easily 
to treatment on high speed computing machinerys 

These principal conclusions are illustrated - and borne out - by means of ; 
an appropriately chosen example. i 
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1. .INTRODUCTION 

It is a well known fact that many physical problems lead te nonlinear integral 

equations. The following examples serve to illustrate this point» 

i. Nyatrom has shown flj that the general first boundary value problem in the 

theory of ordinary differential equations may be reduced to an ordinary differential 

equation of the type 

y" - F (x,y)      -1/2 * x * 1/2 

wifch the boundary conditions y(-l/2) - y(l/2) - 0. This equation, in turn, is 

equivalent to the integral equation 

y (x) - J  K(x,3> F (s,y(a)) ds, 

-1/2 

X(x,a) representing the Green!3 function 9?  the boundary value problem. 

11. Boundary value problems of the form f 

ju"„ • u« • exp a 

with u • f (x,/ ) on the boundary C of the given region Bt  are reducible to integral 

equations, as fellows {2j« Let w(x, £) be the solution of the boundary value 

problem 

4v«0j w » f on C, 

Then the function y • u-w clearly satisfies 

Ay-y exp w - £exp (y)-yj exp w 

with y - 0 on C» If now K(x, £ ; s,o) £ 0 denotes the Green's function of the problem 

J y-y exp w • 0, y - 0 on C, 

- 



then it may be shovn that y(x, £ )  i3 a solution of the nonlinear integral equation 

vfv. fr i *   /7" KfV. * • g.al !V<">  (•"•) -•"•*? ex? (w) dsd^ « 0* 

iii.    In the discussion of certain wave phenomena L. Lichtcnstein f37 was led 

bo the 3tudy of integral equations of the form 

b      b 

L y (x) -    X        J     j   K^ (s,s1...si)j(sJ"y(si) ds1...dsi - 0, 

with L denoting a linear operator, and the K. symmetric and continuous functions 

in the (n+l) dimensional unit cube. 

Physical situations leading to similar nonlinear integral equations have also 

bc/n described by Schmwidler Jh 7 s 

The solution of such integral equations may be accomplished in general by a 

variety of methods, with the choice of the most appropriate one naturally depending 

upon the form and type of the integral equations of interest. Such methods may 

emply closed 'inalyticai expressions, power series expansions, the replacement of 

integrations hy summations, successive approximations, variational methods, etc, 1*5/ 

The approach to be used here will be Jihe iterative one, to be applied to 

integral equations of a generalized Lichtenstein type: 

r   b b 
y(x) - ^  p.. f  KiGc,s1,...si)Fi(s1, ...s») y(a1)...y(si))ds1...ds1 » 0, 

i»l  a a 

Integral equations containing an "inhoinogeneous" term, e.g., of the form 

y* (x) - K0 (x) -jKflb*) -Jfalb*)  a ° 
ean obviously be reduced to the form (l) by the substitution. 

7 

For kernels K. whose squares are integrable, and functions F. that have bounded 

derivatives the existence and uniqueness of a solution will be proved, and an 

upper bound for max jy| will be given. The proof is based on the method of successive 

iterations, a method which alao easily provides an estimate of the error inherent in 

2 
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the nth approximation. The results viill then be generalized to systems of equations 

of type (l), and, finally, an example will be £iven. 

9- ASSUMPTIONS A*H) NOTATIOKS. 

For the sake of simplicity, we shall tnke r = 2 in eq. (l), i,.e. consider in 

the interval I: a h x,3,t £ b the equation, 

y(x)-jK1(x,s) Fi:s,y(3))ds -fpC2<x,s,t)F2<s,t,y(6) y(t))dsdt - 0.       (2) 

The kernels K and K« will bo assumed to have integrable squares, so that J K.. 0»y*/ds, 

JjKn (x,s,t)ds dt exist and are continuous functions of x £l. For- the maximum of 

a continuous function f(s) defined in I we shall employ the notation 

USt,   - max  |f(x)f  . 

•- 

Then 

K" « tfjl^ ds • AX2 ds dt | certaihly exists. 

The continuous functions F_(s,u), F-(«?-t-,u>v) rf-firi^ fr. -J.4JWV.*   J. WA    O , t € I, u,v * «. , 

where J denotes a certain interval ^-CJC^J are assumed to satisfy conditions of oie 

form 

/F^Cs,!^      ) - F1(Sya2)|A  % l\ " »2 I &) 

/F2(s,t,u1,v1) - F2(s,t,u2v2)j£ L2(  lu^Ugl vj^ - v20 ? 

where I*-, L2 are positive numbers independent of s, t, u, v.    The quantities 

\2 - It *i (a, 0)||   , Mg2 - i{F2
2(a, t, 0, 0) /( 

then also exist. 

Relations (3) certainly hold if, for example, F. and F0 have continuous p»rti£L 

derivatives, 6F,/ftu, SFg/ou, bF2/ov for arguments restricted, respectively to the 

intervals I, J. 
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Further, we put 

A • b - a, <* « 1 or 2 for A A / or A>/ 

Other quantities to be employed later on are 

'22222 
If - Lx    + L^, M    - 2^    + M2  , 

A   KM - E, Aa KL - D. 

In the following extensive use will be made of Schwarz's inequality 

|/f(x)g(x)dxU ( J**2 dx)1/2  ( fg2dx)1/2. (U) 

This relation is applicable also to multiple integrals and sums.    If we put 

j/f I * I2(fl/2)^ 

then eq«   (U) m<iy be expressed in the form 

l2(f1/2g1/2) k Kf)i(g). (5) 

3.    LEMMA. 

We are now in a position to st~.0 the following Lemma: 

Lst y iJ be a solution of Eq.   (2),  and let the F.  satisfy conditions of type 

(3).    Then #y|(l - ?Dj jfeE...  
Proof.    It follows from eq. i2) that 

In this inequality the right side is,by   G), identically in x, 

'  t 1(1^) I (F1) + I  (K2) 1 (F2). 

From Schwarz 's inequality for sums it may now be deduced that 

JyUfrO^) + I2(K2)J 
1/2fl2(F1) + I2(F2)j V

2 

£   K[l2(Fx) • I2(F2)J   V2. 

Since, by assumption, y £ J, we may make use of relationships   (3), getting 

I2(F2) *fff}J2(aft,o,d)l  + L2(/y(s)/ + ly    (t)f )J 2 dsdt 

^A2a(M2 + 2L2  fly 0 )2. 
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I2^) h k2*®-^ *• 2 i^  ;/ y // )''. 

2y ad'ition,  then, 

i2^) + I
2
(F2)* .\2afr + 2L UYB f. 

Thus 

fl y H £ K AG(K • 2L|y|   ) «  E + 20|yJ   , 

which TJTOTTfS the l«mma. 
• 

li. EXISTENCE THEQBEK. For functions F , F? satisfying conditions (3) with 

0 *E/(1 - 2D) A & (6J 

eq. (2) has exactly one solution. 

To prove thi3 theorem ve U3c successive iteration, starting with arbitrary con- 

tinuous function v £ J, and defining a sequence /y I of continuous functions by 
o • n > 

yn+1(a) -jk,(x,s) F1(a,yn(3)) ds + jJ'K2(xl3,t)F2(sJt,yn(s),      •  (?) 

y (t) ds dt, n • 0,1,2... 

First we show by induction that y € J. Let, then, y ., have this property. 

By definition (7), following the same reasoning that was used to prove the lemma, 
• 

there is1 obtcinef, 

</yn/,  £  E •2D/|yn_1|. 

From -the inductive aastmption and condition (6) it may now be inferred that 

Myn|*E • 2Ifc<4C, 

i.e. y   € J. 

Next, the sequence is easily shown to be uniformly convergent, as follows: 

From 

IW^ I* i/VFiy-FiW)d3i | 
+ 'iffh^n^K-lV ds dt   / j 

it follows, by means of Schwarz's inequality, that 



'"n+l     'i:' L        1    >'•        •    ••i~J- -1 '•    n   -   ^ 

Taking advantage of rcl-U<mn   (3)  IV   ii.j.fc   il '. •    '•••v.-.   •.-.:•>...; 

30 wiat, 

*2Iil   «V *«-!»•' 

" •'n+l   • *n " n     - n-1'«   ' m 
or, by induction, 

n+l        8 

\n Since 1 - 2D>0      T*       (2D)    i3 convergent,  and It follows that the partial sums 

£0 
n=o I 

y Of y • T   (y ~ y -i) are absolutely •'r  •'o  -Ar  vn  n-1 n^l 
and uniformly convergent. 

The continuous limit function y of the i y I is easily shown to be a solution 

of eqe (2). Putting 

/KjF.Cy) ds + JfK2F2(y) ds dt = y*(x) ! 
i 
| we find^namely, that 

1 >n+l " **U  K P^lW " *!&) + ^ W " ^0 ^ 
But the continuity of the F. in conjunction wi6h the uniform convergence of y 

towards y suffice to make the dix'ference, F.(y ) - F. (y) arbitrarily small by 

taking n sufficiently large. Thus <lso lim y - y uniformly in x. It follows 

that y - y, i.e. that y is a solution of eq. (2). 

Finally , to show that y is the only solution of eq. (2) under the conditions 

stated above let it be assumed that there exists another solution y(:;). Clearly 



•      and fly    ^-yfl <*• €/2 for n j»N.,.    The reasoning: applied above to C3tn;;lisk trie 

relationship   (3) no-' lends to 

0 yn+1 - T*4 (2D)"|y     -Iff, 

or 

vhence 

1 yn+l•" Y£**/2 for n>N2* 

Consequently 

K T - y // < « . 

Due to the arbitrariness'of €. and the meaning of |Y - yjjfit is then necessary 

that Yfcc) - y(x) • 0. 

1 



By the lemma^which it-    applicable here,  and by condition (6), 

|j y|/£E/(l - 2D) £ C+ 

For increasing values of K, L, M, therefore,the upper bound 

E/(l - 2D) of'|y|also increases. 

An estimate of the error jj y - y // of the n  aDprcximaticn y is n • n 

easily obtained.    From 

//y - ynUtfyn+1-V +tfy-W 
it follows that 

n+m 
17 - yna* x i»i.i-»i* •* - y^+i«f • 

i-n 

For fixed n, m -* «•. then since y =?> y uniforsaly, 

I 

i I 
i 

I 
i *~ i-o 

9 y - yn/!*'/yi - y0/l (2D)7((i - 2D) for n^o. (?) 

5. GENERALIZATIONS. 

Equation (2) may be considered to be a special case of a more general 
system 

y(x) -  Z /•••JK
1j(

x»!1),,,» aj)F1j(
8

1»»«'a;j»y1(a1)»«»»y1{Sj)».*»yp(B1),...» 

yp(si)ds1...ds    - 0, 

where i - 1,2,..., p, p Z-lr q Z-l,    To such systems the results of the 
previous sections may be transferred without difficulty; it is necessary 
only to replace the quantities a, E, D ff y /|', etc. by 

11. 
s   i 

i 



<t • 1 or q for A £1 or A  > 1, 

|X   I2(K.,)*    -K^, 

5 

I   %* " «i> A° f ^ " *' '"* fKi Li * °' 

Finally, the important subsidiary condition 1 - 2D > 0 must be replaced by 1 -qB >0# 

For p • q • 1, i.e., for the equation 

y(x) - fK(x,*) f (s,y(s)) da - 0, (10) 

tfcia condition I ~ qE > 0 becomes 0 ^AKL <• 1, or 

Q*A2K-L2*.l. (11) 

Let us ascertain its meaning for the cas>s of the linear integral eqr^tion 

of the second kind 

y(x) - XjK (x,s) y(s) da - f (x). (12) 

This type of equation is obtained from «q„  (1Q> by putting 

F(s,u) - g(s) + X u 

f(x) -/K(X,8) g (s) ds. 

Since in this case L *  II SF/Ou If  « /X / . ineaualitv Clll indicates, that 't 9       w   m - v     «       » 

k7JJm2(ntt) dsdt* LVK
2
 * l. 

Now for the characteristic value of smallest absolute amount of the 

symsstric kernel there exists the relation [61 

Consequently, condition (11) becomes 

I X/.<   I ^ / , 

which is the "well-known sufficient condition for the existence of a unique* 

solution of aq, (12) for arbitrary f(x)« > 

• 

- 



6»    APPLICATIONS. 

There are many practical cases where the kernels may be expressed in 
bilinear forms 

K^s) -    4 0u (*>fu (s> (13) 

K2(x,8,t) - Z <p2i (x) f^ (s,t) . 

the {£.. being linearly independent of the 0~-« and the summation to be extended 
over a finite or infinite number of values i, J.    In such cases the iterative 
procedure (?) clearly becomes 

Vi,i    * />ii<8> Fl <s> f *Li<3>?ni +    f 02j(s) qnJ)ds 

Vl,j " ,/fa?J F2(s,t,     f (s) +   J (a),  ^(t) +   f(t))ds dt. 

The iterative procedure tor the functions y (x) is thua reduced to a metuod 

of successive approximation for the constants p ., a ,$ 

^1,1 " *>ni' V (15) 

TH-1,3  ^Sr^ni' "nj'* 

In the limit, then, 

y(x) -    Z ^ (x) p± •   ^02J (x) qj  , 

where the p., q. satisfy the functior^l aquations 

-   #.   <!>.. qj 

(16) 

for all i, J. 

„ t      —      j 

10 



Whenever ths functional equations (1Y) art- directly solvable the 

solution (16) may be obtained irrjr-ediately. Otherwise U3e must be made of 

the successive approximations (15)» 

Let us now apply the foregoing deductions to the following cases 

K^Xjs) - x(l-s), Is <o, 1> 

K_(x,s,t) - exp(x-s-t) 
c 

F^u) - X(u*l) Js <-l,    1> 

F2(s,t,u,v) - X u v. 

The equation to be s olved,  than, i3 

y(x) -X   //x(l-s)    £y(s)+lj    ds • J/Bxp(x-B-t)y(a)j{t)6adb\ - 0. (16) 

sufficient that 

0 ± E/(1-2D)^1* (6) 

Now 

*a . i 

K - £(l/3) • (e2 - 1)2A«2J       *  1.31 

L -    21/2   JAI, M -   /X| . 

Condition (6) is satisfied, then, for 
J**l 

m  0.2 (19) 

further, the lemma indicates that for the solution y(x), 

II   /V-* / U= a        *   * * / \i   "   «K      » * I '  «       /    • 

Since in this example i « j • 1, the iterative process for eq. (18) may be 

expressed in the form 

Wx) - X <Vl* • Vl "* <x? 

11 



with 
'n*l 

r r 1 
J   (1-s) [X(pn3+qn exp (s)) + 1/ da 

-.2 
qn+l =  X   'u f  (pnS e>^^-3)  + %J  dsJ 

According to the existence and uniqueness theorem p - lira p_„ 

q • lim a exist. These limits satisfy a syst»sn of equations corresponding 

to equations (17), in this case 

p(l-X/6) - qX(e-2) - 1/2 

X2 £(1 -2/e)p * q]2 - q. 

Eliminating p now there is obtained for q  the equation 

X2(c p • p)2 *Y9 

a - 6X(e-2)~ • (6-X)e 

(20) 

Consequently, 

? * 3(«-2) 

f- e2(6-X)2. 

V2, 
q - /(Y - 2aBX2) + [Y(Y - UpX2)]     }/lf\2. (21) 

Of the two possible solutions indicated   here the one corresponding to the 

positive sign becomes unbounded as X approaches zero.    Since it is desired 

to keep the solutions for all / X/ &. X   of norm not exceeding unity the positive 

sign in eq.  (21)    must be discarded. 

12 



Suppose we wish to determine the solution of eq^ (18) for ). « 0.2. 

Vnr the initial approximation we take 

P0 " % ' *• 

yo(x) •* Q„2 (x • exp (x))s 

The resulting approximations 

p    .    » 0-2 Tp /6 * q (--2)7 + 1/2 'n»l t*n Hn*      '^J       ' 
2/ 

SHI ' °'Qh [(»-2)F!/e • qj 

are ahown in the table belcv. 

5UCCSS3j.75  AppJrOXinw tion * — w^w     i. t 

I 

*n 

0 1.0000 1.0000 

1 0.6770 0.0639 

0^317 0.002k 

3 0,5131 0.0008 

h 0.5l7ij 0.0008 

The exact solution, as determined frosi eq. (21), is 

Tix) • 0.2 (0.51735 x * 0.00075 exp (x)). 

Vtt.lt there is always convergence to the aolution for y € J,  IXf £ X , 
o o 

the choice of an initial approximation y outside of J, or a value of JXJJ»X 
o o 

aay lead to divergence» This is the case, for example, for p » a - 25, 

X « 0.2, and p   - a - 1, X - 1„ 

MARK L0TKIN 
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It is worthwhile mentioning that iterative procedures such as those 

exemplified by eqs.  (15)  are eminently suited Tor treatment on high speed 

computing machinery.    The required quadratures may bfc performed u/ anj 

suitable standard methods, or by means of the formulas outlined in /7 j. 
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